Description
The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner.
The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis.
Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include:
- The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures
- A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment
- Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making
- Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes
- An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code
This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.
Randall Matignon, Data Mining Using SAS Enterprise Miner, Download Data Mining Using SAS Enterprise Miner, Free Data Mining Using SAS Enterprise Miner, Data Mining Using SAS Enterprise Miner Torrent, Data Mining Using SAS Enterprise Miner Review, Data Mining Using SAS Enterprise Miner Groupbuy.


ACTIVEDAYTRADER – BOND TRADING BOOTCAMP
John R.Wolberg – Expert Trading Systems. Modeling Financial Markets with Kernel Regression
ACADEMY - TRADING COURSES BUNDLE
Vantagepointtrading - Stock Market Swing Trading Video Course
Rob Hoffman – Using Robert’s Indicators
Sue Nugus - Financial Planning Using Excel
The Secrets of Profitable Trading with MarketClub
Carlos Usabiaga Ibanez – The Current State of Macroeconomics
STOCK OPTIONS BASICS COURSE - Follow Me Trades
Lotfi Zadeh - Fuzzy Sets and Fuzzy Information Granulation Theory
ORDERFLOWS - THE ORDER FLOW PLAYBOOK
Austin Passamonte Package ( Discount 25 % )
William C.Garrett – Investing for Profit with Torque Analysis of Stock Market Cycles
Christopher Baum – An Introduction to Modern Econometrics Using Stata
Alastair Day – Mastering Risk Modeling with Excel
Randall Matignon – Data Mining Using SAS Enterprise Miner
Robert J.Aumann – Handbook of Game Theory with Economic Applications (Vol. II & III)
Alpesh Patel Package ( Discount 20% )
FOLLOWMETRADES – MASTER TRADER COURSE
Joe DiNapoli – Trading With DiNapoli Levels
Constance Brown – The Illustrated Guide to Technical Analysis. Signals & Phrases
Mac X – The Insider Code Agora Forex Trading course
Harold Kerzner – Strategic Planning for Project Management Using a Project Management Manturity Model

Reviews
There are no reviews yet.