Description
Norman L.Johnson – Univariate Discrete Distributions
Description
This Set Contains:
Continuous Multivariate Distributions, Volume 1, Models and Applications, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson
Continuous Univariate Distributions, Volume 1, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson
Continuous Univariate Distributions, Volume 2, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson
Discrete Multivariate Distributions by Samuel Kotz, N. Balakrishnan and Normal L. Johnson
Univariate Discrete Distributions, 3rd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson
Discover the latest advances in discrete distributions theory
The Third Edition of the critically acclaimed Univariate Discrete Distributions provides a self-contained, systematic treatment of the theory, derivation, and application of probability distributions for count data. Generalized zeta-function and q-series distributions have been added and are covered in detail. New families of distributions, including Lagrangian-type distributions, are integrated into this thoroughly revised and updated text. Additional applications of univariate discrete distributions are explored to demonstrate the flexibility of this powerful method.
A thorough survey of recent statistical literature draws attention to many new distributions and results for the classical distributions. Approximately 450 new references along with several new sections are introduced to reflect the current literature and knowledge of discrete distributions.
Beginning with mathematical, probability, and statistical fundamentals, the authors provide clear coverage of the key topics in the field, including:
- Families of discrete distributions
- Binomial distribution
- Poisson distribution
- Negative binomial distribution
- Hypergeometric distributions
- Logarithmic and Lagrangian distributions
- Mixture distributions
- Stopped-sum distributions
- Matching, occupancy, runs, and q-series distributions
- Parametric regression models and miscellanea
Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions. New derivations of discrete distributions via stochastic processes and random walks are introduced without unnecessarily complex discussions of stochastic processes. Throughout the Third Edition, extensive information has been added to reflect the new role of computer-based applications.
With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.
Table of Contents
Preface xvii
1 Preliminary Information 1
1.1 Mathematical Preliminaries, 1
1.1.1 Factorial and Combinatorial Conventions, 1
1.1.2 Gamma and Beta Functions, 5
1.1.3 Finite Difference Calculus, 10
1.1.4 Differential Calculus, 14
1.1.5 Incomplete Gamma and Beta Functions and Other Gamma-Related Functions, 16
1.1.6 Gaussian Hypergeometric Functions, 20
1.1.7 Confluent Hypergeometric Functions (Kummer’s Functions), 23
1.1.8 Generalized Hypergeometric Functions, 26
1.1.9 Bernoulli and Euler Numbers and Polynomials, 29
1.1.10 Integral Transforms, 32
1.1.11 Orthogonal Polynomials, 32
1.1.12 Basic Hypergeometric Series, 34
1.2 Probability and Statistical Preliminaries, 37
1.2.1 Calculus of Probabilities, 37
1.2.2 Bayes’s Theorem, 41
1.2.3 Random Variables, 43
1.2.4 Survival Concepts, 45
1.2.5 Expected Values, 47
1.2.6 Inequalities, 49
1.2.7 Moments and Moment Generating Functions, 50
1.2.8 Cumulants and Cumulant Generating Functions, 54
1.2.9 Joint Moments and Cumulants, 56
1.2.10 Characteristic Functions, 57
1.2.11 Probability Generating Functions, 58
1.2.12 Order Statistics, 61
1.2.13 Truncation and Censoring, 62
1.2.14 Mixture Distributions, 64
1.2.15 Variance of a Function, 65
1.2.16 Estimation, 66
1.2.17 General Comments on the Computer Generation of Discrete Random Variables, 71
1.2.18 Computer Software, 73
2 Families of Discrete Distributions 74
2.1 Lattice Distributions, 74
2.2 Power Series Distributions, 75
2.2.1 Generalized Power Series Distributions, 75
2.2.2 Modified Power Series Distributions, 79
2.3 Difference-Equation Systems, 82
2.3.1 Katz and Extended Katz Families, 82
2.3.2 Sundt and Jewell Family, 85
2.3.3 Ord’s Family, 87
2.4 Kemp Families, 89
2.4.1 Generalized Hypergeometric Probability Distributions, 89
2.4.2 Generalized Hypergeometric Factorial Moment Distributions, 96
2.5 Distributions Based on Lagrangian Expansions, 99
2.6 Gould and Abel Distributions, 101
2.7 Factorial Series Distributions, 103
2.8 Distributions of Order-k, 105
2.9 q-Series Distributions, 106
3 Binomial Distribution 108
3.1 Definition, 108
3.2 Historical Remarks and Genesis, 109
3.3 Moments, 109
3.4 Properties, 112
3.5 Order Statistics, 116
3.6 Approximations, Bounds, and Transformations, 116
3.6.1 Approximations, 116
3.6.2 Bounds, 122
3.6.3 Transformations, 123
3.7 Computation, Tables, and Computer Generation, 124
3.7.1 Computation and Tables, 124
3.7.2 Computer Generation, 125
3.8 Estimation, 126
3.8.1 Model Selection, 126
3.8.2 Point Estimation, 126
3.8.3 Confidence Intervals, 130
3.8.4 Model Verification, 133
3.9 Characterizations, 134
3.10 Applications, 135
3.11 Truncated Binomial Distributions, 137
3.12 Other Related Distributions, 140
3.12.1 Limiting Forms, 140
3.12.2 Sums and Differences of Binomial-Type Variables, 140
3.12.3 Poissonian Binomial, Lexian, and Coolidge Schemes, 144
3.12.4 Weighted Binomial Distributions, 149
3.12.5 Chain Binomial Models, 151
3.12.6 Correlated Binomial Variables, 151
4 Poisson Distribution 156
4.1 Definition, 156
4.2 Historical Remarks and Genesis, 156
4.2.1 Genesis, 156
4.2.2 Poissonian Approximations, 160
4.3 Moments, 161
4.4 Properties, 163
4.5 Approximations, Bounds, and Transformations, 167
4.6 Computation, Tables, and Computer Generation, 170
4.6.1 Computation and Tables, 170
4.6.2 Computer Generation, 171
4.7 Estimation, 173
4.7.1 Model Selection, 173
4.7.2 Point Estimation, 174
4.7.3 Confidence Intervals, 176
4.7.4 Model Verification, 178
4.8 Characterizations, 179
4.9 Applications, 186
4.10 Truncated and Misrecorded Poisson Distributions, 188
4.10.1 Left Truncation, 188
4.10.2 Right Truncation and Double Truncation, 191
4.10.3 Misrecorded Poisson Distributions, 193
4.11 Poisson–Stopped Sum Distributions, 195
4.12 Other Related Distributions, 196
4.12.1 Normal Distribution, 196
4.12.2 Gamma Distribution, 196
4.12.3 Sums and Differences of Poisson Variates, 197
4.12.4 Hyper-Poisson Distributions, 199
4.12.5 Grouped Poisson Distributions, 202
4.12.6 Heine and Euler Distributions, 205
4.12.7 Intervened Poisson Distributions, 205
5 Negative Binomial Distribution 208
5.1 Definition, 208
5.2 Geometric Distribution, 210
5.3 Historical Remarks and Genesis of Negative Binomial Distribution, 212
5.4 Moments, 215
5.5 Properties, 217
5.6 Approximations and Transformations, 218
5.7 Computation and Tables, 220
5.8 Estimation, 222
5.8.1 Model Selection, 222
5.8.2 P Unknown, 222
5.8.3 Both Parameters Unknown, 223
5.8.4 Data Sets with a Common Parameter, 226
5.8.5 Recent Developments, 227
5.9 Characterizations, 228
5.9.1 Geometric Distribution, 228
5.9.2 Negative Binomial Distribution, 231
5.10 Applications, 232
5.11 Truncated Negative Binomial Distributions, 233
5.12 Related Distributions, 236
5.12.1 Limiting Forms, 236
5.12.2 Extended Negative Binomial Model, 237
5.12.3 Lagrangian Generalized Negative Binomial Distribution, 239
5.12.4 Weighted Negative Binomial Distributions, 240
5.12.5 Convolutions Involving Negative Binomial Variates, 241
5.12.6 Pascal–Poisson Distribution, 243
5.12.7 Minimum (Riff–Shuffle) and Maximum Negative Binomial Distributions, 244
5.12.8 Condensed Negative Binomial Distributions, 246
5.12.9 Other Related Distributions, 247
6 Hypergeometric Distributions 251
6.1 Definition, 251
6.2 Historical Remarks and Genesis, 252
6.2.1 Classical Hypergeometric Distribution, 252
6.2.2 Beta–Binomial Distribution, Negative (Inverse) Hypergeometric Distribution: Hypergeometric Waiting-Time Distribution, 253
6.2.3 Beta–Negative Binomial Distribution: Beta–Pascal Distribution, Generalized Waring Distribution, 256
6.2.4 Pólya Distributions, 258
6.2.5 Hypergeometric Distributions in General, 259
6.3 Moments, 262
6.4 Properties, 265
6.5 Approximations and Bounds, 268
6.6 Tables, Computation, and Computer Generation, 271
6.7 Estimation, 272
6.7.1 Classical Hypergeometric Distribution, 273
6.7.2 Negative (Inverse) Hypergeometric Distribution: Beta–Binomial Distribution, 274
6.7.3 Beta–Pascal Distribution, 276
6.8 Characterizations, 277
6.9 Applications, 279
6.9.1 Classical Hypergeometric Distribution, 279
6.9.2 Negative (Inverse) Hypergeometric Distribution: Beta–Binomial Distribution, 281
6.9.3 Beta–Negative Binomial Distribution: Beta–Pascal Distribution, Generalized Waring Distribution, 283
6.10 Special Cases, 283
6.10.1 Discrete Rectangular Distribution, 283
6.10.2 Distribution of Leads in Coin Tossing, 286
6.10.3 Yule Distribution, 287
6.10.4 Waring Distribution, 289
6.10.5 Narayana Distribution, 291
6.11 Related Distributions, 293
6.11.1 Extended Hypergeometric Distributions, 293
6.11.2 Generalized Hypergeometric Probability Distributions, 296
6.11.3 Generalized Hypergeometric Factorial Moment Distributions, 298
6.11.4 Other Related Distributions, 299
7 Logarithmic and Lagrangian Distributions 302
7.1 Logarithmic Distribution, 302
7.1.1 Definition, 302
7.1.2 Historical Remarks and Genesis, 303
7.1.3 Moments, 305
7.1.4 Properties, 307
7.1.5 Approximations and Bounds, 309
7.1.6 Computation, Tables, and Computer Generation, 310
7.1.7 Estimation, 311
7.1.8 Characterizations, 315
7.1.9 Applications, 316
7.1.10 Truncated and Modified Logarithmic Distributions, 317
7.1.11 Generalizations of the Logarithmic Distribution, 319
7.1.12 Other Related Distributions, 321
7.2 Lagrangian Distributions, 325
7.2.1 Otter’s Multiplicative Process, 326
7.2.2 Borel Distribution, 328
7.2.3 Consul Distribution, 329
7.2.4 Geeta Distribution, 330
7.2.5 General Lagrangian Distributions of the First Kind, 331
7.2.6 Lagrangian Poisson Distribution, 336
7.2.7 Lagrangian Negative Binomial Distribution, 340
7.2.8 Lagrangian Logarithmic Distribution, 341
7.2.9 Lagrangian Distributions of the Second Kind, 342
8 Mixture Distributions 343
8.1 Basic Ideas, 343
8.1.1 Introduction, 343
8.1.2 Finite Mixtures, 344
8.1.3 Varying Parameters, 345
8.1.4 Bayesian Interpretation, 347
8.2 Finite Mixtures of Discrete Distributions, 347
8.2.1 Parameters of Finite Mixtures, 347
8.2.2 Parameter Estimation, 349
8.2.3 Zero-Modified and Hurdle Distributions, 351
8.2.4 Examples of Zero-Modified Distributions, 353
8.2.5 Finite Poisson Mixtures, 357
8.2.6 Finite Binomial Mixtures, 358
8.2.7 Other Finite Mixtures of Discrete Distributions, 359
8.3 Continuous and Countable Mixtures of Discrete Distributions, 360
8.3.1 Properties of General Mixed Distributions, 360
8.3.2 Properties of Mixed Poisson Distributions, 362
8.3.3 Examples of Poisson Mixtures, 365
8.3.4 Mixtures of Binomial Distributions, 373
8.3.5 Examples of Binomial Mixtures, 374
8.3.6 Other Continuous and Countable Mixtures of Discrete Distributions, 376
8.4 Gamma and Beta Mixing Distributions, 378
9 Stopped-Sum Distributions 381
9.1 Generalized and Generalizing Distributions, 381
9.2 Damage Processes, 386
9.3 Poisson–Stopped Sum (Multiple Poisson) Distributions, 388
9.4 Hermite Distribution, 394
9.5 Poisson–Binomial Distribution, 400
9.6 Neyman Type A Distribution, 403
9.6.1 Definition, 403
9.6.2 Moment Properties, 405
9.6.3 Tables and Approximations, 406
9.6.4 Estimation, 407
9.6.5 Applications, 409
9.7 Pólya–Aeppli Distribution, 410
9.8 Generalized Pólya–Aeppli (Poisson–Negative Binomial) Distribution, 414
9.9 Generalizations of Neyman Type A Distribution, 416
9.10 Thomas Distribution, 421
9.11 Borel–Tanner Distribution: Lagrangian Poisson Distribution, 423
9.12 Other Poisson–Stopped Sum (multiple Poisson) Distributions, 425
9.13 Other Families of Stopped-Sum Distributions, 426
10 Matching, Occupancy, Runs, and q-Series Distributions 430
10.1 Introduction, 430
10.2 Probabilities of Combined Events, 431
10.3 Matching Distributions, 434
10.4 Occupancy Distributions, 439
10.4.1 Classical Occupancy and Coupon Collecting, 439
10.4.2 Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac Statistics, 444
10.4.3 Specified Occupancy and Grassia–Binomial Distributions, 446
10.5 Record Value Distributions, 448
10.6 Runs Distributions, 450
10.6.1 Runs of Like Elements, 450
10.6.2 Runs Up and Down, 453
10.7 Distributions of Order k, 454
10.7.1 Early Work on Success Runs Distributions, 454
10.7.2 Geometric Distribution of Order k, 456
10.7.3 Negative Binomial Distributions of Order k, 458
10.7.4 Poisson and Logarithmic Distributions of Order k, 459
10.7.5 Binomial Distributions of Order k, 461
10.7.6 Further Distributions of Order k, 463
10.8 q-Series Distributions, 464
10.8.1 Terminating Distributions, 465
10.8.2 q-Series Distributions with Infinite Support, 470
10.8.3 Bilateral q-Series Distributions, 474
10.8.4 q-Series Related Distributions, 476
11 Parametric Regression Models and Miscellanea 478
11.1 Parametric Regression Models, 478
11.1.1 Introduction, 478
11.1.2 Tweedie–Poisson Family, 480
11.1.3 Negative Binomial Regression Models, 482
11.1.4 Poisson Lognormal Model, 483
11.1.5 Poisson–Inverse Gaussian (Sichel) Model, 484
11.1.6 Poisson Polynomial Distribution, 487
11.1.7 Weighted Poisson Distributions, 488
11.1.8 Double-Poisson and Double-Binomial Distributions, 489
11.1.9 Simplex–Binomial Mixture Model, 490
11.2 Miscellaneous Discrete Distributions, 491
11.2.1 Dandekar’s Modified Binomial and Poisson Models, 491
11.2.2 Digamma and Trigamma Distributions, 492
11.2.3 Discrete Adès Distribution, 494
11.2.4 Discrete Bessel Distribution, 495
11.2.5 Discrete Mittag–Leffler Distribution, 496
11.2.6 Discrete Student’s t Distribution, 498
11.2.7 Feller–Arley and Gegenbauer Distributions, 499
11.2.8 Gram–Charlier Type B Distributions, 501
11.2.9 “Interrupted” Distributions, 502
11.2.10 Lost-Games Distributions, 503
11.2.11 Luria–Delbrück Distribution, 505
11.2.12 Naor’s Distribution, 507
11.2.13 Partial-Sums Distributions, 508
11.2.14 Queueing Theory Distributions, 512
11.2.15 Reliability and Survival Distributions, 514
11.2.16 Skellam–Haldane Gene Frequency Distribution, 519
11.2.17 Steyn’s Two-Parameter Power Series Distributions, 521
11.2.18 Univariate Multinomial-Type Distributions, 522
11.2.19 Urn Models with Stochastic Replacements, 524
11.2.20 Zipf-Related Distributions, 526
11.2.21 Haight’s Zeta Distributions, 533
Bibliography 535
Abbreviations 631
Index 633
Author Information
NORMAN L. JOHNSON, PHD, was Professor Emeritus, Department of Statistics, University of North Carolina at Chapel Hill. Dr. Johnson was Editor-in-Chief (with Dr. Kotz) of the Encyclopedia of Statistical Sciences, Second Edition (Wiley).
ADRIENNE W. KEMP, PHD, is Honorary Senior Lecturer at the Mathematical Institute, University of St. Andrews in Scotland.
SAMUEL KOTZ, PHD, is Professor and Research Scholar, Department of Engineering Management and Systems Engineering, The George Washington University in Washington, DC.
Reviews
“With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.” (Xolosepo, 27 October 2012)
“The authors continue to do a praise-worthy job of making the material accessible in the third edition. This book should be on every library’s shelf.” (Journal of the American Statistical Association, September 2006)
“These authors have achieved considerable renown for their comprehensive books on statistical distributions.” (Technometrics, August 2006)
Norman L.Johnson, Univariate Discrete Distributions, Download Univariate Discrete Distributions, Free Univariate Discrete Distributions, Univariate Discrete Distributions Torrent, Univariate Discrete Distributions Review, Univariate Discrete Distributions Groupbuy.


Udemy - Modern React with Redux [2019 Update]
Udemy - Advanced Scripting & Tool Making Using Windows PowerShell
Adam Khoo – Forex Trading Course Level 2 – Pip Netter
Pat Dorsey - The Little Book That Builds Wealth
STOCK OPTIONS BASICS COURSE - Follow Me Trades
BRENDON BURCHARD – THE CONFIDENCE COURSE 2017
Richard Bolstad - Full Nlp Master Practitioner 19 Day Certification
FOREXMENTOR – HOW TO TRADE FOREX USING SUPPORT & RESISTANCE LEVELS
Benjamin Graham - The Interpretation of Financial Statements
Fibsdontlie - Advanced FIBS DON'T LIE Course
VSA ADVANCED MENTORSHIP COURSE
La Rue Hosmer - The Ethics of Management (7 edition)
Orderflowforex - Order Flow Mastery Course
Udemy - Learn OAuth 2.0 – Get Started As An API Security Expert
Moving From The Millennium To The Sustainable Development Goals - Lessons And Recommendations
Udemy - Node.js for Beginners – Become a Node.js Developer + Project
Bkforex - Boomer Quick Profits Day Trading Course
Liz Benny - Insta Social Secrets
Josh Forti – Selling with Confidence
Case Studies in Finance - Managing for Corporate Value Creation
Profile Trading Mastery - Thetradingframework
Analysis Of Environmental Policy In The Power Sector - Equilibrium Methods And Bi-level Modeling
John L. Teall - Financial Market Analytics
Trade Forex 13 Patterns – Golden Ratios Secret Revealed
Chris Bruce – Joint Venture Profits
Udemy - Learn To Create WordPress Themes By Building 10 Projects
Bryan A. Garner, Henry Campbell Black - Black’s Law Dictionary
Rvparkuniversity - Brandon Reynolds – the RV Park Home Study Course
Majorleaguetrading - Major League Trading Basic Trading Course
Adrian Pagan - Nonparametric Econometrics (Themes in Modern Econometrics)
Ben Alistar – SMMA 52
Udemy - PHP – Send And Receive Mobile Text Messages (SMS)
Sandra Rowe - Project Management For Small Projects (2nd Edition)
Ed Schultz - Killer Politics
INVESTOPEDIA - TRADING FOR BEGINNERS
Mario Pilade - The Palgrave Handbook Of European Banking Union Law
FXMasterCourse - FX Master Course
Anticipating Correlations - A New Paradigm for Risk Management
Real Estate Principles - A Value Approach
Nonparametric Econometrics - A primer
Udemy - Master Bootstrap 4 (4.3.1) and code 7 projects with 25 pages
Udemy - Build A Dropshipping Empire From Scratch. Proven Blueprint
Colin M. – Hawk One – Selling Madness
Simpler Options - Small Account Growth Class - Strategies Course, June 2014
FOLLOWMETRADES – MASTER TRADER COURSE
ANDREA UNGER – MASTER THE CODE & GO LIVE
Udemy - Build a Backend REST API with Python & Django – Beginner
Base Camp Trading - Workshop: Mastering Momentum Trading
Jan Kopia - Effective Implementation Of Management Systems
The Stock Trader - How I Make a Living Trading Stocks
Michael Killen – The Funnel Business Gameplan
N.K. Shivananda - World Class Maintenance Management
Udemy - Javascript – From Beginner To Pro-Build Real World JS Apps
Udemy - Python para Data Science e Machine Learning – COMPLETO
Udemy - Process Visualization with HMI SCADA (PLC III)
2 Doodz - Amazon Domination Academy
Udemy - Chart JS, The Complete Guide. ChartJS Missing Manual
Nathan Chan (Foundr) – Infinite Scale
Donatella Alessandrini - Value Making In International Economic Law And Regulation
OPTIONPIT – MAXIMIZING PROFITS WITH WEEKLY OPTIONS TRADING
Natasha Takahashi – The Chatbot Agency Accelerator
LEADRABBIT.IO – US Business, Shopify and ClickFunnel Data
Udemy - The Complete JQuery Course - From Beginner To Advanced
Udemy - ES6 Javascript: The Complete Developer’s Guide
Joe Hippensteel – Ultimate Human Performance
Leveraged Exchange-traded Funds - Price Dynamics And Options Valuation
James Altucher - Trade Like a Hedge Fund
ACTIVEDAYTRADER – BOND TRADING BOOTCAMP
Lain Pirie - The Korean Developmental State
David Snyder – Stealth CPI
Udemy - Linux Bash Shell Scripting: Complete Guide (Incl. AWK & SED)
Udemy - Microservices Software Architecture: Patterns And Techniques
Udemy - Earn Passive Income by Working from Home with Google Adsense
Aspatore Books – Inside the Minds Leading Wall Street Investors
Trading basics - Evolution of a trader
Entrepreneurship in Latin America - A Step Up the Social Ladder?
Gary Clendenen - Business Mathematics (14th Edition)
Sheridanmentoring - Hedged Strategy Series in Volatile Markets - Hedged Credit Spreads
Udemy - Node.Js Absolute Beginners Guide – Learn Node From Scratch
Udemy - JavaScript Memory Game Coding Project
Alpesh Patel – The Internet Trading Course
Anuj Adhiya - Growth Hacking For Dummies
Quantum Mind Power - The Morry Method
Udemy - Apache Kafka Series – Kafka Connect Hands-On Learning
Trader Dale – Volume Profile Video Course
Intuitivetradinginstitute - Intuitive Sigma Education Package ( Video Only )
Udemy - Apache Kafka Series – Learn Apache Kafka For Beginners V2
Professor D. Larry Crumbley - Forensic and Investigative Accounting
Barry Siskind - Powerful Exhibit Marketing
Chris Evans and Taylor Welch – Traffic and Funnels Client Kit
Foundr – Ecommerce Masters 2020
Udemy - Docker Mastery: The Complete Toolset From A Docker Captain
Fiona Campbell - Auditing: A Practical Approach
Engineering Economics - Financial Decision Making For Engineers
Basecamptrading - Secrets of the Energy Sector
Udemy - Make Ecommerce Website Front - End Using HTML CSS Bootstrap
Daniel T.Ferrera 2010 Outlook
FOREXMENTOR – FOREX SCALPING STRATEGY COURSE
Recodeyourmind - Recode Your Mind
T.O.T. TREND TRADER
Udemy - Increase Revenue From Website Visitors Using Link Redirectio
Carlos Dias - The Ceo Who Sees Around Corners
ADVANCED TRADESTATION CODING
Overcome Fear – Dr. Gary Dayton
FX Barrier Options - A Comprehensive Guide for Industry Quants
Timothy deWaal Malefyt - Advertising Cultures
Django 2 - Build & Deploy Fully Featured Web Application
Health Services Marketing - A Practitioner's Guide
Econometrics - Alchemy or Science?
Projects In Laravel - Learn Laravel Building 10 Projects
Christodoulos Floudas, Panos Pardalos – Encyclopedia of Optimization 2nd Ed
Dalton Capital Management – Using Market Logic Techniques with the Market Profile. Advanced Course
Dr. Gary Dayton – Building A Professional Trading Plan
Real Estate Rainmaker 2020 – High Quality Leads Course Real Estate
Timothy Louwers - Auditing and Assurance Services
Ryan Levesque – Ask Method Company (All programs)
Natalie Mizik - Handbook of Marketing Analytics
SARAH – SHECANTRADE – MAXIMIZING YOUR SUCCESS TRADING PUTS AND CALLS
Reviews
There are no reviews yet.